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Abstract. This paper applies fuzzy set theory to the Cox, Ross and Rubinstein (CRR) model to set up the fuzzy
binomial option pricing model (OPM). The model can provide reasonable ranges of option prices, which many
investors can use it for arbitrage or hedge. Because of the CRR model can provide only theoretical reference
values for a generalized CRR model in this article we use fuzzy volatility and fuzzy riskless interest rate to
replace the corresponding crisp values. In the fuzzy binomial OPM, investors can correct their portfolio strategy
according to the right and left value of triangular fuzzy number and they can interpret the optimal difference,
according to their individual risk preferences. Finally, in this study an empirical analysis of S&P 500 index
options is used to find that the fuzzy binomial OPM is much closer to the reality than the generalized CRR
model.
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1. Introduction

As derivative-based financial products become a major part of current global financial
market, it is imperative to bring the basic concepts of options, especially the pricing method
to a level of standardization in order to eliminate possible human negligence in the content
or structure of the option market. Recently, the optimal option price has been used to
compute by the binomial model or the Black-Scholes model. However, volatility and riskless
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interest rate are assumed as constant in those models. Hence, many subsequent studies
emphasized the estimated riskless interest rate and volatility. Cox (1975) introduced the
concept of Constant-Elasticity-of-Variance for volatility. Hull and White (1987) released
the assumption that the distribution of price of underlying asset and volatility are constant.
Wiggins (1987), Scott (1987), Lee, Lee and Wei (1991) released the assumption that the
volatility is constant and assumed that the volatility followed Stochastic-Volatility. Amin
(1993) and Scott (1997) considered that the Jump-Diffusion process of stock price and the
volatility were random process.

Researchers have so far made substantial effort and achieve significant results concerning
the pricing of options (e.g., Brennan and Schwartz, 1977; Geske and Johnson, 1984; Barone-
Adesi and Whaley, 1987). Empirical studies have shown that given their basic assumptions,
existing pricing model seem to have difficulty in properly handling the uncertainties inherent
in any investment process. This may have to do with the fact that traditional option pricing
models have failed to include fuzzy factors in the analysis. So, most of these studies have
focused on how to release the assumptions in the CRR model and the B-S model, including:
(1) the short-term riskless interest rate is constant, (2) the volatility of a stock is constant.
After loosening these assumptions, we need to set up new model.

In reality, the future state of a system might not be known completely due to lack of
information, so investment problems are often uncertain or vague in a number of ways. This
type of uncertainty has long been handled appropriately by probability theory or statistics.
However, in many areas, such as funds, stocks, debt, derivates and others, human judgment
of events may be significantly different based on individuals’ subjective perceptions or
personality tendencies for judgment, evaluation and decisions, thus it is often fuzzy. So we
will use fuzzy set theory to describe and eliminate the “Fuzziness” which is the subjective
assessment made by investors in the OPM.

Therefore, this paper attempts to apply fuzzy set theory to the generalized CRR model,
in order to replace the complex models of previous studies. If we can predict the optimal
range of an option price, investors can make a profit and hedge from that option. When
the uncertainties in the investment environment are taken into consideration, the riskless
interest rate and volatility attributes facing the investors are not only incompliant with the
basic assumptions of the B-S model, but there are cases whereby the model does not even
apply. Hence, this study provides an analysis of investment practice in order to examine the
feasibility of using the fuzzy binomial OPM in practice.

The remainder of this paper is organized as follows. The generalized CRR OPM is
introduced and discussed in Section 2. In Section 3 the fuzzy binomial OPM is inferred
when t = 1, 2, . . . , n. of option price. In Section 4 an empirical analysis is illustrated to
assess the accuracy of approximation to the CRR model. A comparison generalized with
fuzzy binomial OPM in Section 5, and conclusions are presented in Section 6.

2. Generalized CRR models: A review

In this section, we briefly review the binomial OPM of Cox, Ross and Rubinstein (CRR)
model in 1979 under fixed parameters. The n-period binomial OPM may be written
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as

C = (1/rn)
n∑

k=0

n!

k!(n − k)!
pk(1 − p)n−k Max[0, ukdn−k S − X ] (1)

where

C = the n-period option price;
X = the option striking price;
S = the current stock price;
n = the number of periods to maturity;
d = one plus the percentage of downward movement in stock price;
u = one plus the percentage of upward movement in stock price;
r = one plus the riskless interest rate per period;
p = (r − d)/(u − d).

It is assumed that u > r > d; thus, 0 < p < 1. Let m be an integer such that

um−1dn−(m−1)S ≤ E < umdn−m S.

Cox, Ross and Rubinstein (CRR) used a binomial model to derive a formula (1) for OPM.
The binomial OPM is a discrete-time model, whereas the B-S model is continuous-time
model. When the duration of an option is divided into infinite time slots, the CRR model is
closer to the B-S model.

2.1. The assumptions of the CRR model

The CRR model is based upon two fundamental assumptions for the price calculation of
options: firstly, that the riskless interest rate is given; and secondly, that the stock-market
volatility is constant for the duration of the options. Hence, the investor has to ensure
that the variables in the formula, namely the attributes of the riskless interest rate and the
stock-market volatility are in compliance with the assumptions of the model for real-life
applications. Failure to do so will result in price inaccuracy. So we suggest an ideal OPM
based on integrating fuzzy set theory with the CRR model (see Appendix A).

2.2. The comments of riskless interest rate

Although the risk neutrality assumption serves as a basis for the construction of the OPM, it
provides only “instant” validity. Beyond the “instant” time frame, the assumption either no
longer exists or any attempt to extend the validity of the assumption becomes fundamentally
impractical. More importantly, in the realm of financial economics, the concept of “risk
neutrality” should only be confined to the discussion of the demand side of a stock market,
rather than associating it with the stock-market “equilibrium prices,” as the B-S model
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did. The B-S model began its formulation by composing for the present moment a risk-
free portfolio of stocks and their corresponding options in an appropriate proportion. The
problem is that the state of zero risk for such an investment portfolio exists only in a
single instant. According to Hull (1993), for options with a relatively long expiration,
transcendental deductions are invalid for drawing conclusions on the actual content of the
entire options. When we discount stock prices at option expiration with a riskless interest
rate, we are in fact declaring that all those different types of stocks will grow at the same
riskless interest rate. This will inevitably lead to biased results.

The best way to modify the assumption of OPM that all investors are “risk neutral”
individuals—treating the research and analysis environment of the model as a “risk neu-
tral” world—in pricing stock options is to simply define this assumption as an “objective”
view, so that it can be applied to each individual investor. In the real world, it is often given
that each investor possesses some subjectivity in making decisions and describes objectivity
issues with subjectively interpreted actions, the meaning of “risk preference” can vary from
one person to another. In other words, the concept lacks complete “objectivity” or “standard-
ization”, so it cannot be used in any way to measure the preferences for a particular stock of
individual investors.1 Industry forecasts its future riskless interest rate in accordance with
the classification of “booming economy”, “fair economy”, or “depression”. The definitions
of “booming economy”, “fair economy”, and “depression”, depend on the investor’s subjec-
tive opinion. This means that past discussions on “risk preference” theories that were based
on some kind of complete “objectivity” assumption are not validated. Therefore, this study
introduces the concept of triangular fuzzy number to explain riskless interest rate including
booming economy: Rh (the highest riskless interest rate), depression: Rl (the lowest riskless
interest rate), and fair economy: Rm (the medium riskless interest rate), which is between
Rl and Rh riskless interest rate.

2.3. The type of volatility

Theoretically, the volatility in any OPM should be the future volatility. If future volatility
is known, we will know the distribution of future option price and the true optimal price of
option. Hence, many researches use many ways to estimate future volatility. Frequently we
use the volatility of stock return to substitute future volatility. Some of the more popular
methods are described as follows:

(1) Historical Volatility: Assume that past volatility is same as future volatility; we can
then use the volatility of a stock return to estimate its future volatility. This is the most
general way, also called Equally-Weighted Moving Average method.

σ =
√√√√ 1

N

n∑

t=1

(rt − r̄ )2

rt : stock return of t-th period; r̄ : the average of stock return of t = 1 to n period.
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(a) For rt is discrete time rt = St −St−1

St−1
, ex-dividend not considered, and when return is

not stationary, then σ is bigger;
(b) For rt is Continuous time rt = ln( St

St−1
), ex-dividend considered, and when return

is stationary, then σ is smaller; where, St : the closing price of t-th day; St−1: the
closing price of t − 1-th day.

(2) Implied Volatility (Implied Standard Deviation): If we assure that the OPM is correct,
we can use an inverse function to compute implied volatility, and we will get different
volatility over the same period of time. The volatility of deep-in-the-money (S � X )
and deep-out-of-the-money (S � X ) is greater than that of at-the-money (S = X ),
which is called the volatility smile. Investors can buy an option with lower implied
volatility and a sell option with higher implied volatility.

(3) Parkinson method: Parkinson (1980) proposed that the use of only closing prices could
not represent the actual situations, so he used the highest and lowest prices instead of
the closing price.

(4) Garman and Klass method: Garman and Klass (1980) modified the Parkinson method,
adding the opening and closing price to it. They used four variables to estimate the
volatility: closing price, opening price, highest price, and lowest price.

(5) ARCH method: Bollerslev (1986) introduced the concept of time series to the volatility
of stock price, considering the volatility of stock price that would change over time
instead of constant. And the stock price has the characteristic of clutching. He formu-
lated an OPM with the current volatility (σ 2

t ) affected by the volatility of last period
(σ 2

t−1) and the stock return of last period (r2
t−1). The Nobel Prize shared by Engle

and Granger (2003) for methods of analyzing economic time series with time-varying
volatility (ARCH) and common trends (cointegration). Engle found that the concept of
autoregressive conditional heteroskedasticity (ARCH) accurately captures the proper-
ties of many time series and developed methods for statistical modeling of time-varying
volatility.

3. Fuzzy binomial OPM

Options normally include call option and put option. The owner of a call (put) has the
right to buy (sell) something, at a set price, within a set time period in exchange for this
right. There are five primary factors affecting option prices. These are striking price, cur-
rent stock price, time, riskless interest rate, and volatility. Since the striking price and time
until option expiration are both determined, current stock prices reflect on ever period,
but riskless interest rate determined the interest rate of currency market, and volatility
can’t be observed directly but can be estimated by historical data and situation analy-
sis. Therefore, riskless interest rate and volatility are estimated. We can use the concept
of fuzziness to estimate the two factors riskless interest rate and volatility. The fuzzy
binomial OPM is illustrated below, including one-step and inference of fuzzy binomial
OPM.
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Figure 1. Stock price and call price movement in time (�t) under the fuzzy binomial OPM.

3.1. One step fuzzy binomial OPM

According to the triangular fuzzy number, we can set up the stock price, call price, volatility,
riskless interest rate, and probability that have three values including low, medium, and high.
The deriving process of call prices is illustrated as Figure 1.

Assume that an option will mature in a given period; and the stock price is initially set
to S(t = 1). It can move up or down in the next period (t = 2). It is possible that there
are three scenarios in the up movement, Sur (=ur · S), Sum(=um · S), or Sul(=ul · S), and
three scenarios in the down movement, Sdr (=dr · S), Sdm(=dm · S), or Sdl(=dl · S). Hence,
in each time interval the stock price moves from its initial value of S to one of the above
six new values, Sur , Sum , Sul , Sdr , Sdm or Sdl .
where,

Sur : stock price of up movement under greatest volatility, Sur = S0 · [e(1+ρ)σ
√

�t ],
Sum : stock price of up movement under medium volatility, Sum = S0 · [eσ

√
�t ],

Sul : stock price of up movement under smallest volatility, Sul = S0 · [e(1−ρ)σ
√

�t ],
Sdr : stock price of down movement under smallest volatility, Sdr = S0 · [e−(1−ρ)σ

√
�t ],

Sdm : stock price of down movement under medium volatility, Sdm = S0 · [e−σ
√

�t ],
Sdl : stock price of down movement under greatest volatility, Sdl = S0 · [e−(1+ρ)σ

√
�t ].

The call prices in the maturity are Cur = max(Sur − X, 0), Cum = max(Sum − X, 0), Cul =
max(Sul − X, 0), Cdr = max(Sdr − X, 0), Cdm = max(Sdm − X, 0), Cdl = max(Sdl − X, 0).

We can combine the bond and stock to get the call price. We make an example of the
greatest volatility.

Cu = �u · S + Bu

where,

�u : the number of stock purchased under the greatest volatility, suppose stocks can be
divided infinitely;

S: current stock price;
Bu : amount invested in bonds under the greatest volatility.

Assume we buy �u number of stocks under the greatest volatility, and invest amount Bu in
risk assets, (Rl , Rm, Rh), after one period, the value of portfolio under for up movement is
�u · ur · S + eRh�t · Bu and the one for down is �u · dl · S + eRh�t · Bu .
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where,

ur: the range of the greatest volatility of “up” movement. The movement from S to
Sur (=ur·S) is therefore an “up” movement under the greatest volatility;

dl: the range of the greatest volatility of “down” movement. The movement from S to
Sdl(=dl·S) is therefore a “down” movement under the greatest volatility;

eRl�t : the discount factor of riskless interest rate;
eRl�t · Bu : the sum of riskless interest rate and principal of bond after one period under the

greatest volatility.

Suppose the value of the portfolio either under up or down movement is equal to the value

of the corresponding call price. Given
∧

ur ∈ ur,
∧
dl ∈ dl, then

�u · ∧
ur ·S + eRh�t · Bu = Cur (2)

�u ·
∧
dl ·S + eRh�t · Bu = Cdl (3)

From equations (2) and (3), we can get

Bu =
∧

ur ·Cdl −
∧
dl ·Cur

(
∧

ur −
∧
dl)eRh�t

(4)

�u = Cur − Cdl

(
∧

ur −
∧
dl)S

, hedge ratio under greatest volatility. (5)

We replace �u and Bu in Cu = �u · S + Bu , by equations (4) and (5), and we can derive
the following equations.

Cu = Cur − Cdl

(
∧

ur −
∧
dl)S

· S +
∧

ur ·Cdl −
∧
dl ·Cur

∧
ur ·eRh�t −

∧
dl ·eRh�t

= Cur · eRh�t − Cdl · eRh�t

∧
ur ·eRh�t −

∧
dl ·eRh�t

+
∧

ur ·Cdl −
∧
dl ·Cur

∧
ur ·eRh�t −

∧
dl ·eRh�t

= (eRh�t −
∧
dl)Cur + (

∧
ur −eRh�t )Cdl

∧
ur ·eRh�t −

∧
dl ·eRh�t

= (eRh�t −
∧
dl)Cur + (

∧
ur −eRh�t )Cdl

(
∧

ur −
∧
dl)eRh�t
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Let

Pu = eRh�t −
∧
dl

∧
ur −

∧
dl

, then 1 − Pu =
∧

ur −
∧
dl −eRh�t +

∧
dl

∧
ur −

∧
dl

=
∧

ur −eRh�t

∧
ur −

∧
dl

.

Similarly

Let Pm = eRm�t −
∧

dm
∧

um −
∧

dm
, then 1 − Pm =

∧
um −eRm�t

∧
um −

∧
dm

.

Let Pd = eRl�t −
∧

dr
∧
ul −

∧
dr

, then 1 − Pd =
∧
ul −eRl�t

∧
ul −

∧
dr

.

The probabilities of three up movements are Pu , Pm and Pd , while the probabilities of
three down movement is 1 − Pu , 1 − Pm and 1 − Pd , respectively. In the above equations,
Cu , Cm and Cd are the right, medium and the left values of the current fuzzy option price.
So we can get the fuzzy binomial OPM under greatest volatility. By the above formula,
in a one-step fuzzy binomial OPM, let (Cu , Cm , Cd ) be the triangular fuzzy number for
the current call price, with Cu , Cm and Cd be the greatest, medium and smallest volatility
respectively. Then

Cu = e−Rl�t [Pu · Cur + (1 − Pu) · Cdl];

Cm = e−Rm�t [Pm · Cur + (1 − Pm) · Cdl];

Cd = e−Rh�t [Pd · Cul + (1 − Pd ) · Cdr ].

3.2. Two-step fuzzy binomial OPM

Step 1. The two-step fuzzy OPM can be further processed, as follows. The fuzzy of stock
price is combined at t = 3, the different paths of stock price may generate the same
values. The numbers of every node at different periods will be inferred later.

Step 2. Next, we use the stock price at t = 3 and exercise price to compute the option price
and we move from the stock price of t = 3 to the call price of t = 3. We obtain the call
price from the stock price, and then we infer the call price from t = 3 to t = 2. Similar
to the process t = 3 to t = 2, we obtain the call price at t = 1. Finally, the method for
defuzzified a fuzzy ranking (Opricovic and Tzeng, 2003), and the BNP (Best Nonfuzzy
Performance) value for the triangular fuzzy number R̃i (DRt , MRt , URt ) can be found
using the following equation:

BNPt = DRt + [(U Rt − DRt ) + (MRt − DRt )]/3 ∀t (5)

After using equation (5), the call price is still the only triangular fuzzy number. We can
follow the same process to get a triangular fuzzy number for current call prices at t = 2,

and we can compute the interval value of the call price at t = 1.
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3.3. N-step fuzzy binomial OPM

In order to obtain the option price from the stock price, the detail and inference process are
derived and explained as below.

Step 1. Let ρ be the percentage of upswing and downing relative to the volatility σ , for
reference, we call ρ the sensitivity index of volatility. Estimate ρ and σ value to compute
the Sur , Sum , Sul , Sdr , Sdm or Sdl . We estimated ρ and σ to compute volatility. In the
other words, σ (1 + ρ) is the volatility of the right value of up movement, σ (1 − ρ) is the
volatility of the left value of up movement, and Sur (=ur·S), Sum(=um·S), and Sul(=ul·S)
are the degree of up movement. In the down movement, −σ (1 − ρ) is the volatility
of the right value of down movement, −σ (1 + ρ) is the volatility of the left value of
down movement, and Sdr (=dr·S), Sdm(=dm·S), and Sdl(=dl·S) are the degree of down
movement.

Step 2. From the stock price of t = n to the call price of t = n. We use the stock price at
t = n and exercise price to compute the option price. The process is the same with CRR
model. Cn = max(Sn − X, 0), where, Cn is the call price at time t , Sn is the stock price
at time t , X is striking price.

Step 3. The call price from t = n to t = n − 1. Now we integrate the fuzzy set with
the CRR model, and use different probabilistic for different volatilities and risk interest
rates. Here, Cu , Cm and Cd are the largest, middle, and smallest values of the fuzzy option
price. Each node of the call price has three call prices, not just a single one, as in the
CRR model. So we replace the call prices Cur and Cdl for the greatest volatility to get
Cut = e−Rl�t [Pu · Cur + (1 − Pu) · Cdl]; Cum and Cdm for the medium volatility to get
Cmt = e−rm�t [Cum · Pm + Cdm · (1 − Pm)]; and Cul and Cdr for the smallest volatility to
get Cdt = e−Rh�t [Cul · Pd + Cdr · (1 − Pd )].

Step 4. The call price from t = n − 1 to t = n − 2. We use the same principle with the
call price from t = n to t = n − 1, however with three call prices at t = n − 1. We
compute the BNP value of triangular fuzzy number to operate, and a triangular fuzzy
number represents the call price at every node. If we still use the same way for the call
price from t = n to t = n − 1, the value we get at every node will be multiple call
price.

Step 5. The call price from t = n − 2 to t = n − 3, . . . , t − 1. The same principle applies
to the call price from t = n − 1 to t = n − 2, for computing the BNP value to get
the reasonable call price from equation (5), we can further formulate equation (5) into
equation (6). Hence, we can get the only triangular fuzzy number of the current call price,
not multiple solutions.

Ct = Cdt [(Cut − Cdt ) + (Cmt − Cdt )]/3 (6)

As mentioned earlier, we know that the movement of stock in the fuzzy binomial OPM is
the same as in the CRR model, it either goes up or down. But in the fuzzy binomial OPM,
there are three scenarios for each “up” and “down”. These are Sur , Sum , Sul , Sdr , Sdm or
Sdl . The value of every node in the fuzzy tree of stock price is the initial stock S with ur,
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um, ul, dr, dm, or dl, the difference of different periods and nodes is the order of them. We call
them that a, b, c, d, e, f : [e(1+ρ)σ

√
�t ]a, [eσ

√
�t ]b, [e(1−ρ)σ

√
�t ]c, [e−(1−ρ)σ

√
�t ]d , [e−σ

√
�t ]e,

[e−(1+ρ)σ
√

�t ] f .

We can conclude that the value of every node at different periods is as follows:

1. S0 · [e(1+ρ)σ
√

�t ]a [eσ
√

�t ]b 2. S0 · [e(1+ρ)σ
√

�t ]a [e(1−ρ)σ
√

�t ]c 3. S0 · [e(1+ρ)σ
√

�t ]a

[e−(1−ρ)σ
√

�t ]d

4. S0 · [e(1+ρ)σ
√

�t ]a[e−σ
√

�t ]e 5. S0 · [e(1+ρ)σ
√

�t ]a[e−(1+ρ)σ
√

�t ] f 6. S0 · [eσ
√

�t ]b[e(1−ρ)σ
√

�t ]c

7. S0 · [eσ
√

�t ]b[e−(1−ρ)σ
√

�t ]d 8. S0 · [eσ
√

�t ]b[e−σ
√

�t ]e 9. S0 · [eσ
√

�t ]b

[e−(1+ρ)σ
√

�t ] f

10. S0 · [e(1−ρ)σ
√

�t ]c[e−(1−ρ)σ
√

�t ]d 11. S0 · [e(1−ρ)σ
√

�t ]c[e−σ
√

�t ]e 12. S0 · [e(1−ρ)σ
√

�t ]c

[e−(1+ρ)σ
√

�t ] f

13. S0 · [e−(1−ρ)σ
√

�t ]d [e−σ
√

�t ]e 14. S0 · [e−(1−ρ)σ
√

�t ]d [e−(1+ρ)σ
√

�t ] f 15. S0 · [e−σ
√

�t ]e

[e−(1+ρ)σ
√

�t ] f

where a + b + c + d + e + f = t − 1, t is period, and a, b, c, d, e, f = 1, 2, 3, . . .

We use several examples to describe the computation value of the fuzzy tree of stock
price.

Example. see Appendix B.

When t = 5, 6, . . . , n, we can deduce in the same way, too. Through the above explanation,
we organize a general solution for the fuzzy binomial OPM to determine the number and
value at every node at different periods. After we re-organize the same values, we can obtain
the numbers of nodes and the corresponding values that are introduced as below.

If t = 1, we will get the current price is S0, which t − 1 = 0, N1 = N1−1 + 4(1 − 1) + 1 =
N0 + 4(0) + 1 = 1

If t = 2, we get Sur , Sum , Sul , Sdr , Sdm and Sdl , which t −1 = 1, N2 = N2−1+4(2−1)+1 =
N1 + 4(1) + 1 = 1 + 4 + 1 = 6

If t = 3, which t − 1 = 2, N3 = N3−1 + 4(3 − 1) + 1 = N2 + 4(2) + 1 = 6 + 8 + 1 = 15
If t = 4, which t −1 = 3, N4 = N4−1 +4(4−1)+1 = N3 +4(3)+1 = 15+12+1 = 28

Next, we can also get the call price at t = 5, 6, . . ., n in the same way.
So we conclude the numbers of node at different periods as follows:

Nt = Nt−1 + 4(t − 1) + 1

where,

Nt : the numbers of nodes at t
Nt−1: the numbers of nodes at t − 1
n: the number of periods, where t = 1 ∼ n, and N0 = 0
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By following this methodology, we can get N5 = 45, N6 = 66, and we will get the numbers
of nodes at different periods by following this methodology. As discussed earlier, we know
that the movement of stock in the fuzzy binomial OPM is the same as with the CRR model,
it either moves up or down. But there are three scenarios for each “up” and “down” in fuzzy
binomial OPM. These values can also be computed accordingly.

4. Empirical analysis: Case of S&P 500 index options

We use actual cases to explain the process of fuzzy binomial OPM in this section. Firstly,
we need to identify the variables and data characteristics, which are described as below.

4.1. Variables and data description

The data were obtained from the DataStream figures for S&P 500 index option prices,
and its underlying security is the S&P 500 stock index. This sample data consists of daily
closing S&P 500 index call options from July 28, 2003, to March 15, 2004. The stock price
index and call price at issuing date are 996.52 and 16.4, respectively. The strike price of
S&P 500 index is 1100. According Hull (1998), we should use the trading days instead of
calendar days, the unit must be annualized, but the life of a call warrant is usually less than
one year, so we use the 3 Month US Treasury Bill Rate to substitute for the riskless interest
rate. The lowest interest rate (Rl) is 0.85%, the middle interest rate (Rm) is 0.915% and
the highest interest rate (Rh) is 0.98%. Then we use historical data to estimate volatility of
closing price from daily data over the most recent 30 to 60 days.

4.2. The fuzzy tree of stock price

We use historical data of CBOT (Chicago Board of Trade) to estimate volatility and use the
riskless interest rate and Rl , Rm , Rh to estimate the lowest, middle and highest discount fac-
tor. Where σ (1+ρ) and σ (1−ρ) are the volatility of the right and left value of up movement,
so ur = [e(1+ρ)σ

√
�t ], um = [eσ

√
�t ], and ul = [e(1−ρ)σ

√
�t ] are the degree of up move-

ment, Sur (=ur·S), Sum(=um·S), and Sul(=ul·S) are the stock price of up movement. In other
words, −σ (1−ρ) and −σ (1+ρ) are the volatility of the right and left value of down move-
ment, the degree and the stock price of down movement can be computed in the same way.

For example, when the fuzzy interval ρ = 5%, the number of division t = 2, σ is initial
volatility, 1.05σ and 0.95σ are the volatility of right value and left value of up movement,
−0.95σ and −1.05σ are the volatility of right value and left value of down movement.
Then, we let “u” and “d” be the degrees of up and down movements, which have their own
triangular fuzzy numbers.

The estimated volatility from historical data (2004/1/1–2004/3/15) is 11.4181%, after
the fuzzy volatility, we get the stock price Sur , Sum and Sul under up movement and Sdr ,
Sdm and Sdl under down movement respectively. For instance, Sur is the right value of up
movement, where ur = e(1+ρ)σ

√
�t ,so Sur = 996.52 × e1.05×σ

√
0.3 = 1064.1542; Sul is

the left value of up movement, where ul = e(1−ρ)σ
√

�t ,so Sul = 996.52 × e0.95×σ
√

0.3 =
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1057.5198. The stock price interval will be between 1064.1542 and 1057.5198 under up
movement; if Sdr is the right value of down movement, where dr = e−(1−ρ)σ

√
�t , so

Sdr = 996.52 × e−0.95×σ
√

0.3 = 939.0388; if Sdl is the left value of down movement, where
dl = e−(1+ρ)σ

√
�t ,so Sdl = 996.52 × e−1.05×σ

√
0.3 = 933.1844. Then we can get the result

that the stock price interval will be between 939.0388 and 933.1844 under down movement.
The concept of the fuzzy binomial OPM is much easier to comprehend, and it is much closer
to reality than the CRR model. There are three scenarios for up and down movements, and
six nodes on t = 2. We use the same method to fuzzily every node, and combining the same
value, we can get 15 nodes on t = 3. The result is described as follows.

4.3. The fuzzy interval of option price

We use the stock price at t = 0.6 and exercise price to compute the option price at t = 0.6.

By Cur = max(Sur − X, 0), Cum = max(Sum − X, 0), Cul = max(Sul − X, 0), Cdr =
max(Sdr − X, 0), Cdm = max(Sdm − X, 0), Cdl = max(Sdl − X, 0). Next, after fuzzy the
risk interest rate, we can get the optimal interval for option price of every node:Cu =
e−Rl�t [Pu · Cur + (1 − Pu) · Cdl], Cm = e−Rm�t [Pm · Cum + (1 − Pm) · Cdm] and Cd =
e−Rh�t [Pd ·Cul + (1− Pd ) ·Cdr ]. For example, referring to Figure 2, Cum is max(1132.8306
− 1100,0) = 32.8306,Cdm is max(999.6410–1100,0) = 0, and through Cm = e−rm�t [Pm ·
Cum + (1 − Pm) · Cdm], we can get Cm is 16.5779. Next, we compute the BNP value of a
triangular fuzzy number. The BNP value of Cur is 18.3606, Cdl is 0 at t = 0.3, and through
them we get the right value of current fuzzy option price, Cu = 8.3672 at t = 0. Using this
method, we can get the current call price of triangular fuzzy numbers. To conduct the call
price of sensitivity analysis, let there be four periods, every period is three to four month
(t = 0.3). And the fuzzy interval sensitivity is 5%, 10%, 15%, and 20%. The variety of call
prices can be divided as Table 1.

4.4. Discussions

Financial applications of fuzzy set have consumption behavior analysis (e.g. consumer pref-
erence matching; consumption decomposition; spending trend prediction; subjective price
evaluation; prediction of satisfaction level), credit card business (e.g. credit fraud detection;
automated fraud explanation; credit spending analysis), market forecast (e.g. stock price
forecast; consumer price forecast; industry/regional growth prediction), market demand
analysis, market fluctuation forecast, market simulations (e.g. pricing strategy study) and
case studies (e.g. scenario simulations). . . etc. So this study use fuzzy set in binomial OPM.

Because of financial investments are not motivated strictly by returns. To date, “high
returns” and “risk aversion” remain to be two equally important objectives in investments.
In order to establish a complete, valid “stock option” pricing model that provides a com-
bined explanation for the both investment motivations, we need to adopt a two-dimensional
“return-risk” space for the construction of the research and analysis environment. Whereas
most investors face with the trade-offs and ambiguities between risk and return in making
an investment decision, therefore a risk lover more concerns the return than the risk; he
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Table 1. The variety of Call prices and sensitivity analysis

Call prices of periods divided

Sensitivity Expiration dates
analysis (ρ) 1 (t = 0.3) 2 (t = 0.6) (t = 0.664) 3 (t = 0.9) 4 (t = 1.2)

5% 8.3672 13.6326 14.9518 19.8162 25.4562
7.4695 13.1544 14.4258 19.1139 24.9621
6.5731 12.6761 13.8999 18.4125 24.4680

10% 9.2375 14.0695 15.4336 20.4637 25.8915
7.4684 13.1553 14.4260 19.1115 24.9640
5.6975 12.2425 13.4191 17.7580 24.0378

15% 10.1050 14.5087 15.9258 21.1513 26.3689
7.4658 13.1573 14.4305 19.1253 24.9732
4.8169 11.8104 12.9668 17.2311 23.6359

20% 10.9702 14.9881 16.4625 21.8991 27.0043
7.4615 13.1605 14.4523 19.2159 25.0511
3.9302 11.3984 12.5701 16.8905 23.3409

prefers the call price higher and chooses the right value of triangular fuzzy number. In this
way, he will make more profit, because of the call price more fluctuate in high price. On
the other hand, a risk averter more concerns the risk than the return. Because he considers
hedge and loss, he chooses the left value of triangular fuzzy number, let his cost be lower
that the loss will be less. A risk neutral considers both “profitability” and “stability”, so
he chooses reasonable prices, which lie between the right value and left value of triangu-
lar fuzzy number. We know that the investor of the different risk preference will choose
the different the triangular fuzzy number of market price. Therefore, the fuzzy triangular
number of market price provides more choices for the investors and it can explain the risk
preference of investor.

5. A comparison

To show the differences between generalized binomial OPM with fuzzy binomial OPM.
The call prices of periods divided in generalized binomial OPM as Table 2.

Table 2. The variety of Call prices and sensitivity analysis

Call prices of periods divided
Sensitivity
analysis (ρ) 1 (t = 0.3) 2 (t = 0.6) Expiration dates (t = 0.664) 3 (t = 0.9) 4 (t = 1.2)

5% 9.0946 14.1880 15.7130 21.3362 26.6044
10% 10.8769 15.6178 17.4354 24.1379 29.0729
15% 12.6704 17.0609 19.1735 26.9636 31.5690
20% 14.4751 18.5176 20.9274 29.8135 34.0930
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From Table 1, we know that the medium values of call prices are very stable to follow the
variety of sensitivity at different periods, but when the sensitivity becomes larger, the bigger
the fuzzy interval. From Table 2, we know that the smaller the sensitivity, the precision is
getting better. In the other words, when sensitivity becomes larger the bigger the call prices.
In this case, when sensitivity becomes larger, the fuzzy binominal model is more precise
than the generalized CRR model, and it is much closer to the reality than the generalized
CRR model. Because there are more nodes in the fuzzy binominal model, it becomes much
closer to the continuous B-S model, and the convergence is faster than the generalized CRR
model.

After applying fuzzy set theory to the generalized CRR model, we get (Table 1) for
t = 0.664 the time until option expiration of triangular fuzzy number is between 13.9 and
14.95 in ρ = 5%, and in the generalized CRR model is 15.713. Both values from CRR
model and fuzzy binominal model are lower than the real market price of 16.4. This is due
to the system bias between theoretical value and market price, so in practice, the market
price is usually higher than theoretical value of an option (Black, 1975 and Merton, 1976).
When sensitivity is bigger, for t = 0.664 the time until option expiration of triangular
fuzzy number is between 12.57 and 16.46 in ρ = 20%, but in the generalized CRR model
is 20.9274. The interval values from fuzzy binominal model include the real market price
of 16.4, but the generalized CRR model is higher than it. The fuzzy number is closer to
real market price than CRR model. Compared with a generalized CRR model, the value of
the generalized CRR model falls above the right value of triangular fuzzy number, so it is
higher than the value of the right value of the triangular fuzzy number.

The impact of implicit “Fuzziness” is inevitable due to the subjective assessment made
by investors in a generalized CRR model. How to draw the high or low of each criterions
are described by linguistic terms, which can be expressed in triangular fuzzy numbers. The
concept of triangular fuzzy number attempts to deal with real problems by possibility, it is
much easier to comprehend. Owing to vague concepts frequently represented in decision
data, the crisp values are inadequate to model real-life situations, so we can’t predict the
call price exactly. In fact, it exist price interval. In fuzzy binomial OPM, the call price
is an interval, so it is more elastic and also corresponds to actual situation. Investors can
correct their portfolio strategy according to the right and left value of triangular fuzzy
number, and they can interpret the optimal difference, according to their individual risk
preferences.

6. Conclusions

When we wish to confirm and describe the price of an option, we can not exactly calculate
its price, since the price of option is an interval under uncertainty environment. Investors
who use the generalized CRR model, they must be able to estimate and forecast both risk-
less interest rate and volatility as the basis of analysis. It is inevitable that an investor’s
estimation and forecasting by different degrees of uncertainty, therefore this paper attempts
to construct a fuzzy binomial OPM to forecast the price of option. We propose a solu-
tion for the uncertainty investment question and promote the practicable of application in
OPM.
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According to the right and left value of triangular fuzzy number, investors are able to
correct their portfolio strategy by combining CRR model and fuzzy set theory. When the
market price lies between the right value and left value of triangular fuzzy number, a risk
lover can buy much more, whereas a risk averter can buy less than those who are risk neutral.
When market price is lower than the left value of triangular fuzzy number, a risk averter
can buy more. Therefore, this research result provides more choices for the investors.

Appendix A: Fuzzy set theory

Fuzzy set theory was first introduced by Zadeh (1965), and was subsequently applied to
various areas where two-valued logic was not reasonable. In reality, many things cannot be
distinguished as vague but fuzzy way.

A.1. Triangular fuzzy number, TFN

The concept of triangular fuzzy number attempts to deal with real problems by possibility.
The membership of a triangular fuzzy number is defined as follows:

µ Ã(x) =




(x − l)/(m − l) m ≤ x ≤ r

(r − x)/(r − m) l ≤ x ≤ m

0 otherwise

A.2. Fuzzy number

According to the characteristics of triangular fuzzy numbers and the extension principle put
forward by Zadeh (1965), the operational laws of triangular fuzzy numbers, Ã = (l1, m1, r1)
and B̃ = (l2, m2, r2) are as follows:

(1) Addition of two fuzzy numbers⊕

(l1, m1, r1) ⊕ (l2, m2, r2) = (l1 + l2, m1 + m2, r1 + r2)

Figure 2. The membership function of the triangular fuzzy number.
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(2) Subtraction of two fuzzy numbers�

(l1, m1, r1) � (l2, m2, r2) = (l1 − r2, m1 − m2, r1 − l2)

(3) Multiplication of two fuzzy numbers ⊗

(l1, m1, r1) ⊗ (l2, m2, r2) ∼= (l1l2, m1m2, r1r2)

(4) Multiplication of any real number k and a fuzzy number ⊗

k ⊗ (l1, m1, r1) = (kl1, km1, kr1)

(5) Division of two fuzzy numbers �

(l1, m1, r1) � (l2, m2, r2) ∼= (l1/r2, m1/m2, r1/ l2)

A.3. Fuzzy relation

We use 0/1 to represent having an is/isn’t relationship between elements in a traditional
relation; and in contrast, we use a number between 0 and 1 to represent the relationship of
elements in fuzzy relation. When the relationship is closer to 1, the relationship is stronger,
and when the relationship is closer to 0, the relationship is weaker. In fuzzy set theory, we
describe the relationship by a membership function.

These basis operators include joint, intersection and composition. Let ting A ⊆ X × Y
and B ⊆ X × Y, then the relative operations between A and B are as follows:

(1) Joint

A ∪ B = µA∪B(x, y)

= max[µA(x, y), µB(x, y)]

= ∨[µA(x, y), µB(x, y)]

(2) Intersection

A ∩ B = µA∩B(x, y)

= min[µA(x, y), µB(x, y)]

= ∧[µA(x, y), µB(x, y)]
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(3) Composition: There are several types of composition, of which the max-min operation
is by far the most well-known. If A ⊆ X × Y and B ⊆ X × Y, then the max-min
operation of A and B is

A ◦ B = µA◦B(x, z)

= max[min(µA(x, y), µB(y, z))]

= ∨[µA(x, y) ∧ µB(y, z)]

where “◦” is an operator.

Appendix B

Example 1. If t = 1, a + b + c + d + e + f = 0, then a = b = c = d = e = f = 0,
and the volatility of [e(1+ρ)σ

√
�t ]0 = [eσ

√
�t ]0 = [e(1−ρ)σ

√
�t ]0 = [e−(1−ρ)σ

√
�t ]0 =

[e−σ
√

�t ]0 = [e−(1+ρ)σ
√

�t ]0 = 1. Therefore, we get the only value S0.

Example 2. If t = 2, a + b + c + d + e + f = 1, there are the following 6 stock prices.

(1) a = 1, b + c + d + e + f = 0 then, S0 · [e(1+ρ)σ
√

�t ]1, the other items are zero;
(2) b = 1, a + c + d + e + f = 0 then, S0 · [eσ

√
�t ]1, the other items are zero;

(3) c = 1, a + b + d + e + f = 0 then, S0 · [e(1−ρ)σ
√

�t ]1, the other items are zero;
(4) d = 1, a + b + c + e + f = 0 then, S0 · [e−(1−ρ)σ

√
�t ]1, the other items are zero;

(5) e = 1, a + b + c + d + f = 0 then, S0 · [e−σ
√

�t ]1, the other items are zero;
(6) f = 1, a + b + c + d + e = 0 then, S0 · [e−(1+ρ)σ

√
�t ]1, the other items are zero.

Example 3. If t = 3, a + b + c + d + e + f = 2, there are the following 21 stock prices.

(1) a = 2, b + c + d + e + f = 0, then, S0 · [e(1+ρ)σ
√

�t ]2 = S0 · e2(1+ρ)σ
√

�t ;
(2) b = 2, a + c + d + e + f = 0, then, S0 · [eσ

√
�t ]2 = S0 · e2σ

√
�t ;

(3) c = 2, a + b + d + e + f = 0, then, S0 · [e(1−ρ)σ
√

�t ]2 = S0 · e2(1−ρ)σ
√

�t ;
(4) d = 2, a + b + c + e + f = 0, then, S0 · [e−(1−ρ)σ

√
�t ]2 = S0 · e−2(1−ρ)σ

√
�t ;

(5) e = 2, a + b + c + d + f = 0, then, S0 · [e−σ
√

�t ]2 = S0 · e−2σ
√

�t ;
(6) f = 2, a + b + c + d + e = 0, then, S0 · [e−(1+ρ)σ

√
�t ]2 = S0 · e−2(1+ρ)σ

√
�t ;

(7) a = b = 1, c + d + e + f = 0, then, S0 · [e(1+ρ)σ
√

�t ]1[eσ
√

�t ]1 = S0 · e(2+ρ)σ
√

�t ;
(8) a = c = 1, b + d + e + f = 0, then, S0 · [e(1+ρ)σ

√
�t ]1[e(1−ρ)σ

√
�t ]1 = S0 · e2σ

√
�t ;

(9) a = d = 1, b + c + e + f = 0, then, S0 · [e(1+ρ)σ
√

�t ]1[e−(1−ρ)σ
√

�t ]1 = S0 · e2ρσ
√

�t ;

(10) a = e = 1, b + c + d + f = 0, then, S0 · [e(1+ρ)σ
√

�t ]1[e−σ
√

�t ]1 = Sρσ
√

�t
0 ;

(11) a = f = 1, b + c + d + e = 0, then, S0 · [e(1+ρ)σ
√

�t ]1[e−(1+ρ)σ
√

�t ]1 = S0;
(12) b = c = 1, a + d + e + f = 0, then, S0 · [eσ

√
�t ]1[e(1−ρ)σ

√
�t ]1 = S0 · e(2−ρ)σ

√
�t ;
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(13) b = d = 1, a + c + e + f = 0, then, S0 · [eσ
√

�t ]1[e−(1−ρ)σ
√

�t ]1 = Sρσ
√

�t
0 ;

(14) b = e = 1, a + c + d + f = 0, then, S0 · [eσ
√

�t ]1[e−σ
√

�t ]1 = S0;
(15) b = f = 1, a + c + d + e = 0, then, S0 · [eσ

√
�t ]1[e−(1+ρ)σ

√
�t ]1 = S0 · e−ρσ

√
�t ;

(16) c = d = 1, a + b + e + f = 0, then, S0 · [e(1−ρ)σ
√

�t ]1[e−(1−ρ)σ
√

�t ]1 = S0;
(17) c = e = 1, a + b + d + f = 0, then, S0 · [e(1−ρ)σ

√
�t ]1[e−σ

√
�t ]1 = S0 · e−ρσ

√
�t ;

(18) c = f = 1, a +b +d +e = 0, then, S0 · [e(1−ρ)σ
√

�t ]1[e−(1+ρ)σ
√

�t ]1 = S0 ·e−2ρσ
√

�t ;
(19) d = e = 1, a + b + c + f = 0, then, S0 · [e−(1−ρ)σ

√
�t ]1[e−σ

√
�t ]1 = S0 · e−(2−ρ)σ

√
�t ;

(20) d = f = 1, a +b+c+e = 0, then, S0 · [e−(1−ρ)σ
√

�t ]1[e−(1+ρ)σ
√

�t ]1 = S0 ·e−2σ
√

�t ;
(21) e = f = 1, a + b + c + d = 0, then, S0 · [e−σ

√
�t ]1[e−(1+ρ)σ

√
�t ]1 = S0 · e−(2+ρ)σ

√
�t .

After re-organizing the identical situations above, we get 15 unique situations:

1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11. 12. 13. 14. 15.

1 7 2,8 12 3 9 10,13 11,14,16 15,17 18 4 19 20,5 21 6

Example 4. If t = 4, a + b + c + d + e + f = 3, we have 56 stock prices as follow:

(1) a = 3, b + c + d + e + f = 0, then, S0 · [e(1+ρ)σ
√

�t ]3 = S0 · e3(1+ρ)σ
√

�t ;
(2) b = 3, a + c + d + e + f = 0, then, S0 · [eσ

√
�t ]3 = S0 · e3σ

√
�t ;

(3) c = 3, a + b + d + e + f = 0, then, S0 · [e(1−ρ)σ
√

�t ]3 = S0 · e3(1−ρ)σ
√

�t ;
(4) d = 3, a + b + c + e + f = 0, then, S0 · [e−(1−ρ)σ

√
�t ]3 = S0 · e−3(1−ρ)σ

√
�t ;

(5) e = 3, a + b + c + d + f = 0, then, S0 · [e−σ
√

�t ]3 = S0 · e−3σ
√

�t ;
(6) f = 3, a + b + c + d + e = 0, then, S0 · [e−(1+ρ)σ

√
�t ]3 = S0 · e−3(1+ρ)σ

√
�t ;

(7) a = 2, b = 1, c + d + e + f = 0, then, S0 · [e(1+ρ)σ
√

�t ]2[eσ
√

�t ]1 = S0 · e(3+2ρ)σ
√

�t ;
(8) a = 2, c = 1, b+d+e+ f = 0, then, S0 ·[e(1+ρ)σ

√
�t ]2[e(1−ρ)σ

√
�t ]1 = S0 ·e(3+ρ)σ

√
�t ;

(9) a = 2, d = 1, b + c + e + f = 0, then, S0 · [e(1+ρ)σ
√

�t ]2[e−(1−ρ)σ
√

�t ]1 = S0 ·
e(1+3ρ)σ

√
�t ;

(10) a = 2, e = 1, b + c + d + f = 0, then, S0 · [e(1+ρ)σ
√

�t ]2[e−σ
√

�t ]1 = S(1+2ρ)σ
√

�t
0 ;

(11) a = 2, f = 1, b + c + d + e = 0, then, S0 · [e(1+ρ)σ
√

�t ]2[e−(1+ρ)σ
√

�t ]1 = S0 ·
e(1+ρ)σ

√
�t ;

(12) b = 2, c = 1, a + d + e + f = 0, then, S0 · [eσ
√

�t ]2[e(1−ρ)σ
√

�t ]1 = S0 · e(3−ρ)σ
√

�t ;
(13) b = 2, d = 1, a + c + e + f = 0, then, S0 · [eσ

√
�t ]2[e−(1−ρ)σ

√
�t ]1 = S0 · e(1+ρ)σ

√
�t ;

(14) b = 2, e = 1, a + c + d + f = 0, then, S0 · [eσ
√

�t ]2[e−σ
√

�t ]1 = S0 · eσ
√

�t ;
(15) b = 2, f = 1, a + c + d + e = 0, then, S0 · [eσ

√
�t ]2[e−(1+ρ)σ

√
�t ]1 = S0 · e(1−ρ)σ

√
�t ;

(16) c = 2, d = 1, a + b + e + f = 0, then, S0 · [e(1−ρ)σ
√

�t ]2[e−(1−ρ)σ
√

�t ]1 = S0 ·
e(1−ρ)σ

√
�t ;

(17) c = 2, e = 1, a +b +d + f = 0, then, S0 · [e(1−ρ)σ
√

�t ]2[e−σ
√

�t ]1 = S0 ·e(1−2ρ)σ
√

�t ;
(18) c = 2, f = 1, a + b + d + e = 0, then, S0 · [e(1−ρ)σ

√
�t ]2[e−(1+ρ)σ

√
�t ]1 = S0 ·

e(1−3ρ)σ
√

�t ;
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(19) d = 2, e = 1, a+b+c+ f = 0, then, S0 ·[e−(1−ρ)σ
√

�t ]2[e−σ
√

�t ]1 = S0 ·e−(2−ρ)σ
√

�t ;
(20) d = 2, f = 1, a + b + c + e = 0, then, S0 · [e−(1−ρ)σ

√
�t ]2[e−(1+ρ)σ

√
�t ]1 = S0 ·

e−(3−ρ)σ
√

�t ;
(21) e = 2, f = 1, a+b+c+d = 0, then, S0 ·[e−σ

√
�t ]2[e−(1+ρ)σ

√
�t ]1 = S0 ·e−(3+ρ)σ

√
�t ;

(22) a = 1, b = 2, c + d + e + f = 0, then, S0 · [e(1+ρ)σ
√

�t ]1[eσ
√

�t ]2 = S0 · e(2+ρ)σ
√

�t ;
(23) a = 1, c = 2, b+d+e+ f = 0, then, S0 ·[e(1+ρ)σ

√
�t ]1[e(1−ρ)σ

√
�t ]2 = S0 ·e(3−ρ)σ

√
�t ;

(24) a = 1, d = 2, b + c + e + f = 0, then, S0 · [e(1+ρ)σ
√

�t ]1[e−(1−ρ)σ
√

�t ]2 = S0 ·
e−(1−3ρ)σ

√
�t ;

(25) a = 1, e = 2, b + c + d + f = 0, then, S0 · [e(1+ρ)σ
√

�t ]1[e−σ
√

�t ]2 = S−(1−ρ)σ
√

�t
0 ;

(26) a = 1, f = 2, b + c + d + e = 0, then, S0 · [e(1+ρ)σ
√

�t ]1[e−(1+ρ)σ
√

�t ]2 = S0 ·
e−(1+ρ)σ

√
�t ;

(27) b = 1, c = 2, a + d + e + f = 0, then, S0 · [eσ
√

�t ]1[e(1−ρ)σ
√

�t ]2 = S0 · e(3−2ρ)σ
√

�t ;

(28) b = 1, d = 2, a + c + e + f = 0, then, S0 · [eσ
√

�t ]1[e−(1−ρ)σ
√

�t ]2 = S−(1−2ρ)σ
√

�t
0 ;

(29) b = 1, e = 2, a + c + d + f = 0, then, S0 · [eσ
√

�t ]1[e−σ
√

�t ]2 = S0 · e−σ
√

�t ;
(30) b = 1, f = 2, a+c+d +e = 0, then, S0 ·[eσ

√
�t ]1[e−(1+ρ)σ

√
�t ]2 = S0 ·e−(1+2ρ)σ

√
�t ;

(31) c = 1, d = 2, a + b + e + f = 0, then, S0 · [e(1−ρ)σ
√

�t ]1[e−(1−ρ)σ
√

�t ]2 = S0 ·
e−(1−ρ)σ

√
�t ;

(32) c = 1, e = 2, a +b+d + f = 0, then, S0 · [e(1−ρ)σ
√

�t ]1[e−σ
√

�t ]2 = S0 ·e−(1+ρ)σ
√

�t ;
(33) c = 1, f = 2, a + b + d + e = 0, then, S0 · [e(1−ρ)σ

√
�t ]1[e−(1+ρ)σ

√
�t ]2 = S0 ·

e−(1+3ρ)σ
√

�t ;
(34) d = 1, e = 2, a+b+c+ f = 0, then, S0 ·[e−(1−ρ)σ

√
�t ]1[e−σ

√
�t ]2 = S0 ·e−(3−ρ)σ

√
�t ;

(35) d = 1, f = 2, a + b + c + e = 0, then, S0 · [e−(1−ρ)σ
√

�t ]1[e−(1+ρ)σ
√

�t ]2 = S0 ·
e−(3+ρ)σ

√
�t ;

(36) e = 1, f = 2, a+b+c+d = 0, then, S0·[e−σ
√

�t ]1[e−(1+ρ)σ
√

�t ]2 = S0·e−(3+2ρ)σ
√

�t ;
(37) a = 1, b = 1, c = 1, d + e + f = 0, then, S0 · [e(1+ρ)σ

√
�t ]1[eσ

√
�t ]1[e(1−ρ)σ

√
�t ]1 =

S0 · e3σ
√

�t ;
(38) a = 1, b = 1, d = 1, c +e + f = 0, then, S0 · [e(1+ρ)σ

√
�t ]1[eσ

√
�t ]1[e−(1−ρ)σ

√
�t ]1 =

S(1+2ρ)σ
√

�t
0 ;

(39) a = 1, b = 1, e = 1, c + d + f = 0, then, S0 · [e(1+ρ)σ
√

�t ]1[eσ
√

�t ]1[e−σ
√

�t ]1 =
S0 · e(1+ρ)σ

√
�t ;

(40) a = 1, b = 1, f = 1, c +d +e = 0, then, S0 · [e(1+ρ)σ
√

�t ]1[eσ
√

�t ]1[e−(1+ρ)σ
√

�t ]1 =
S0 · eσ

√
�t ;

(41) a = 1, c = 1, d = 1, b+e+ f = 0, then, S0·[e(1+ρ)σ
√

�t ]1[e(1−ρ)σ
√

�t ]1[e−(1−ρ)σ
√

�t ]1

= S0 · e(1+ρ)σ
√

�t ;
(42) a = 1, c = 1, e = 1, b +d + f = 0, then, S0 · [e(1+ρ)σ

√
�t ]1[e(1−ρ)σ

√
�t ]1[e−σ

√
�t ]1 =

S0 · eσ
√

�t ;
(43) a = 1, c = 1, f = 1, b+d+e = 0, then, S0·[e(1+ρ)σ

√
�t ]1[e(1−ρ)σ

√
�t ]1[e−(1+ρ)σ

√
�t ]1

= S0 · e(1−ρ)σ
√

�t ;
(44) a = 1, d = 1, e = 1, b+c+ f = 0, then, S0 ·[e(1+ρ)σ

√
�t ]1[e−(1−ρ)σ

√
�t ]1[e−σ

√
�t ]1 =

S−(1−2ρ)σ
√

�t
0 ;



www.manaraa.com

274 LEE, TZENG AND WANG

(45) a = 1, d = 1, f = 1, b + c + e = 0, then, S0 · [e(1+ρ)σ
√

�t ]1[e−(1−ρ)σ
√

�t ]1

[e−(1+ρ)σ
√

�t ]1 = S−(1−ρ)σ
√

�t
0 ;

(46) a = 1, e = 1, f = 1, b+c+d = 0, then, S0 ·[e(1+ρ)σ
√

�t ]1[e−σ
√

�t ]1[e−(1+ρ)σ
√

�t ]1 =
S0 · e−σ

√
�t ;

(47) b = 1, c = 1, d = 1, a +e + f = 0, then, S0 · [eσ
√

�t ]1[e(1−ρ)σ
√

�t ]1[e−(1−ρ)σ
√

�t ]1 =
S0 · eσ

√
�t ;

(48) b = 1, c = 1, e = 1, a + d + f = 0, then, S0 · [eσ
√

�t ]1[e(1−ρ)σ
√

�t ]1[e−σ
√

�t ]1 =
S0 · e(1−ρ)σ

√
�t ;

(49) b = 1, c = 1, f = 1, a +d +e = 0, then, S0 · [eσ
√

�t ]1[e(1−ρ)σ
√

�t ]1[e−(1+ρ)σ
√

�t ]1 =
S0 · e(1−2ρ)σ

√
�t ;

(50) b = 1, d = 1, e = 1, a + c + f = 0, then, S0 · [eσ
√

�t ]1[e−(1−ρ)σ
√

�t ]1[e−σ
√

�t ]1 =
S−(1−ρ)σ

√
�t

0 ;
(51) b = 1, d = 1, f = 1, a+c+e = 0, then, S0 ·[eσ

√
�t ]1[e−(1−ρ)σ

√
�t ]1[e−(1+ρ)σ

√
�t ]1 =

S0 · e−σ
√

�t ;
(52) b = 1, e = 1, f = 1, a + c + d = 0, then, S0 · [eσ

√
�t ]1[e−σ

√
�t ]1[e−(1+ρ)σ

√
�t ]1 =

S0 · e−(1+ρ)σ
√

�t ;
(53) c = 1, d = 1, e = 1, a+b+ f = 0, then, S0 ·[e(1−ρ)σ

√
�t ]1[e−(1−ρ)σ

√
�t ]1[e−σ

√
�t ]1 =

S0 · e−σ
√

�t ;
(54) c = 1, d = 1, f = 1, a + b + e = 0, then, S0 · [e(1−ρ)σ

√
�t ]1[e−(1−ρ)σ

√
�t ]1

[e−(1+ρ)σ
√

�t ]1 = S0 · e−(1+ρ)σ
√

�t ;
(55) c = 1, e = 1, f = 1, a+b+d = 0, then, S0 ·[e(1−ρ)σ

√
�t ]1[e−σ

√
�t ]1[e−(1+ρ)σ

√
�t ]1 =

S0 · e−(1+2ρ)σ
√

�t ;
(56) d = 1, e = 1, f = 1, a +b+c = 0, then, S0 · [e−(1−ρ)σ

√
�t ]1[e−σ

√
�t ]1[e−(1+ρ)σ

√
�t ]1

= S0 · e−3σ
√

�t .

After re-organizing the identical situations, we get 28 unique situations.

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

1 7 8,22 37,2 23,12 27 3 9 10,38 11,39,41,13 40,42,14,47 43,15,48,16 49,17 18

15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28.

24 44,28 45,25,50,27 46,51,29,53 26,52,54,32 30,55 33 4 19 20,34 56,5 35,21 36 6

Note

1. As mentioned earlier, except for the case of universal existence of such demand factors applicable to each and
every investor, these factors have to undergo stock pricing standardization.
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